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Abstract— Energy supply in rural and off-grid communities 

has traditionally relied on diesel-based microgrids, due to limited 
access. But global environmental concerns are pushing for the 
transformation of these systems into renewable-based microgrids. 
This transition to more complex systems with a mix of 
dispatchable and non-dispatchable resources requires new 
planning tools that ensure the security of supply. This paper 
presents a novel mixed-integer linear optimization model that 
determines optimal technology mix, size, placement, and 
associated dispatch for a multi-energy microgrid. The model 
satisfies microgrid’s electrical and heat transfer network 
limitations by integrating linear power flow and heat transfer 
equations. It captures the efficiency gains from waste heat 
recovery through combined heat and power technologies, by 
modeling the interplay between electrical and heat sources. To 
ensure a secure design against generator outages, the optimization 
maintains sufficient reserve capacity in the system, which is 
dynamically allocated based on system operating conditions. 
Several case studies on an isolated microgrid model, developed 
based on a real microgrid in Alaska, illustrate how the proposed 
model works. The results show the effectiveness of the model and 
are used to discuss various aspects of the optimization solution.  

 
Index Terms—microgrid, isolated, remote, N-1 contingency, 

security-constrained, optimal planning, optimal dispatch, mixed 
integer linear program, MILP 

I.  NOMENCLATURE 
We denote variables in italic fonts, parameters in non-italic 

fonts, and binary/integer variables with all-small letters. The 
nomenclature is sorted alphabetically.  
Sets and indices 
c    continuous generation technologies: photovoltaic (PV), 

solar thermal (ST), electric chiller (EC), boiler (BL), 
absorption chiller (AC) 

e    edge index for line ampacity constraint approximation 
g    discrete generation technologies: internal combustion 

engine (ICE), micro-turbine (MT), fuel cell (FC) – these 
technologies may be CHP-enabled.  

i     all generation and storage technologies (g ∪ c ∪ s) 
j     all generation technologies (g ∪ c) 
k     al continuous technologies (c ∪ s) 
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n, n′     microgrid nodes: 1, 2,…, N 
s    storage technologies: electric storage (ES), heat storage 

(HS), cold storage (CS) 
t     time 
u     energy use: electricity (EL), cooling (CL), heating (HT) 

Parameters 
αj    useful heat recovered from a unit of generated electricity 
γn,n′   heat loss coefficient for heat transfer pipe (n,n′), % per 

meter 
ηj     electrical efficiency of generation technology j 
ηsC     charging efficiency of storage technology s 
ηsD     discharging efficiency of storage technology s 
φs    losses due to self-discharge in storage technology s, % 

per Δt 
ϕ    generation or load power factor 
Δt     optimization time-step, hour 
Δtctg     post-contingency dispatch period duration, seconds 
Δtctgrmp   post-contingency ramp-up period duration, seconds 
ARi    annuity rate for technology i 
CCn   Curtailment cost (post-contingency) for electrical loads 

at node n, $/kW 
CERj   carbon emissions rate from generation technology j, 

kg/kWh 
CPa    coefficient of performance for absorption chiller 
CPe     coefficient of performance for electric chiller 
CR����s   maximum charge rate of storage technology s, % of 

capacity 
DR����s   maximum discharge rate of storage technology s, % of 

capacity 
Es    minimum acceptable energy (state of charge) for storage 

technology s, % 
Es    maximum acceptable energy (state of charge) for storage 

technology s, % 
FCCk     fixed capital cost of continuous technology k, $ 
GCj    generation cost (e.g. fuel consumption) of technology j, 

$/kWh 
Hn,n′    heat transfer capacity for pipe (n,n′), kW 
M     an arbitrary large number 
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N     number of electrical/thermal nodes 
Pg���g   maximum operating power of discrete generation 

technology g, kW 
Pgg   minimum operating power of discrete generation 

technology g, kW 
PgRg   maximum rate of generation increase for discrete 

technology g, % of capacity 
Pln,u,t  load (active load for electricity end-use) for end-use u at 

node n, kW 
Qln,t  reactive electricity load at node n, kVAr 
Rn,n′    resistance of line (n,n′), pu 
Sn,n′     power carrying capacity of line (n,n′), pu 
Sb     microgrid base apparent power, kVA 
SPt     solar potential at time t, % of peak capacity 
TCCg  turnkey capital cost of discrete generation technology g, 

$/kW 
V    minimum acceptable voltage magnitude, pu 
V    maximum acceptable voltage magnitude, pu 
V0     slack bus voltage, pu 
VCCk     variable capital cost of continuous technology k, $/kW 
Xn,n′    inductance of line (n,n′), pu 

Decision variables  
𝛥𝛥𝛥𝛥𝛥𝛥n,s,t   output power increase from battery, kW 
Δ𝛥𝛥𝑃𝑃n,g,t

LstPrt  contribution of the partial load unit from discrete 
technology g at bus n to the post-contingency dispatch, 
kW 

Δ𝛥𝛥𝑃𝑃n,g,t
Min   output power increase from minimum load units, kW 

Δ𝛥𝛥𝑃𝑃n,g,t
Prt    output power increase from partial load unit, kW 

𝛥𝛥𝑏𝑏n,k     binary investment decision for technology k at node n 
𝛥𝛥𝑏𝑏n,g,t    binary variable for the existence of a partial load unit 
𝛥𝛥𝑏𝑏n,g,t    binary variable for the existence of a maximum load unit 
𝑛𝑛𝑏𝑏n,g   integer number of installed units from discrete 

generation technology g at node n 
𝑛𝑛𝑛𝑛n,g,t   integer number of minimum load units from discrete 

technology g  
𝑛𝑛𝑛𝑛n,g,t  integer number of operating units from discrete 

technology g at node n at time t 
𝑛𝑛𝑏𝑏n,g   integer number of maximum load units from discrete 

technology g 
𝐶𝐶n,k    capacity of continuous technology k at node n, kW for 

generation or kWh for storage technologies 
𝐶𝐶𝑅𝑅n,s,t   charge rate (input power) of storage technology s at node 

n at time t, kW 
𝐷𝐷𝑅𝑅n,s,t   discharge rate (output power) of storage technology s at 

node n at time t, kW 
𝐸𝐸n,s,t    energy stored (state of charge) in storage technology s at 

node n at time t, kWh 
𝐻𝐻n,n′,t   heat flow from node n to n′ at time t, kW 
𝛥𝛥n,n′,t    active power flow in line (n,n′) at time t, per unit 
𝛥𝛥𝑃𝑃n,j,t    generation of technology j at node n, kW 
𝛥𝛥𝑃𝑃n,g,t

Lst   largest generation among all of the units from 
technology g at bus n at time t, kW 

𝛥𝛥𝑃𝑃n,g,t
Prt    generation of the partial load unit from technology g at 

node n at time t, kW 
𝛥𝛥𝑏𝑏n,t    injected active power at node n, pu 
𝛥𝛥𝑃𝑃n,t

Cur   electrical load not met at node n following a contingency 
at time t, kW 

𝑄𝑄n,n′,t    reactive power flow in line (n,n′) at time t, per unit 
𝑄𝑄𝑏𝑏n,t    injected reactive power at node n, pu 
𝑉𝑉𝑉𝑉n,t    voltage magnitude squared at node n, pu 

II.  INTRODUCTION 
HE attention towards microgrids is increasing at a fast pace, 
due to their benefits in terms of renewable integration, low 

carbon footprint, reliability and resiliency, power quality, and 
economics. However, microgrids have been the only solution 
for rural and off-grid communities for a long time, due to the 
limited/lack-of access to the main grid [1]. Traditionally, these 
off-grid communities relied on diesel generation to supply their 
loads, despite the higher fuel prices in the remote areas, but 
nowadays with increased global environmental concerns and 
incentives for a transformation of these diesel-based systems 
into renewable-based microgrids, changes can be observed [2]. 
This transition to resources with high variability and 
uncertainty, such as wind and photovoltaic, requires new 
microgrid planning tools to ensure the security of supply of 
these isolated systems. 

A comprehensive microgrid investment and planning 
optimization must address (a) power generation mix selection; 
(b) resource sizing and allocation; (c) operation scheduling [3]; 
and (d) interplay between electricity, cooling, and heating loops 
in the microgrid to take full advantage of excess heat. (e) 
Moreover, in the context of remote/isolated microgrids, 
accounting for security of supply constraints in the design and 
operation is needed. A review of the literature (comprehensive 
reviews of many of the existing tools and computer models for 
renewable energy integration and microgrid planning can be 
found in [3]–[5]) shows that most of the existing models focus 
on individual sub-problems and do not include the others, or 
include them without enough depth.  

Several examples of microgrid design formulations that only 
tackle the electrical energy flow, neglecting heating and 
cooling, are given in [6]–[9]. Among this category are also 
some of the distribution network planning formulations [10]–
[13] that consider distributed energy resources (DER), since 
they share some of the same characteristics with the microgrid 
design problem. These methods only model electrical energy 
use and usually consider a limited generation mix.  

Among the models that account for different energy uses are 
[14]–[18]. Omu et al. [14] formulated a mixed integer linear 
program for the technology selection, unit sizing, unit 
allocation, and distribution network structure of a distributed 
energy system that meets the electricity and heating demands of 
a cluster of buildings. This work, however, models electrical 
energy as a commodity whose transfer from one location to 
another is decided without physical laws, i.e. power flow 
constraints or Kirchhoff laws. Similarly, [15]–[17] present 
approaches for design and planning of urban and distributed 
energy systems,  but do not include power flow equations. Basu 
et al. use power loss sensitivity to guide the optimization in 

T 
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siting Combined Heat and Power (CHP)-based DERs in [18]. 
Although both electrical and thermal networks are modeled, the 
formulation is nonlinear, and solves using a stochastic 
approach, which entails a significant computational burden. 
Furthermore, obtaining an optimal solution is not scalable in 
such solution methods. 

The existing literature also includes references that consider 
security of supply in the microgrid design. In the literature on 
grid-connected systems, some methods focus on improving the 
reliability and security of supply in the distribution system, 
through leveraging the design of multiple distribution system 
connected microgrids [19]–[21]. Alternatively, in the context of 
an individual microgrid, some references integrate security of 
supply indices, e.g. Loss of Load Expectation (LOLE), as 
constraints into the problem of optimal sizing and placement of 
DERs in the microgrid. However, due to the probabilistic nature 
of the indices, these methods result in nonlinear stochastic 
formulations [22] that require complex solution methodologies, 
e.g., meta-heuristics combined with Monte Carlo simulations 
[23] or Robust Optimization combined with Benders 
decomposition [7]. Although these methods can capture the 
uncertainty associated with the security of supply, they cannot 
be applied to complex multi-energy microgrids due to two main 
reasons: First, they mostly fail to capture the interplay between 
electricity, heating, and cooling loads and sources. Second, 
these techniques entail significant computational burdens and 
cannot guarantee a certain degree of optimality, especially 
when applied to large problems such as multi-energy 
microgrids. 

To address the gap in the literature, this paper aims at 
including the security of supply constraint in the optimal design 
of isolated multi-energy microgrids and proposes a novel model 
for N-1 security-constrained design of such systems. The 
proposed model builds on the Distributed Energy Resources 
Customer Adoption Model (DER-CAM) developed by 
Lawrence Berkeley National Laboratory [24], [25]. The 
contributions of this work are threefold:  

• First, we propose an integrated design approach that 
determines the optimal mix, size, location, and 
dispatch of renewable and fossil fuel-based DERs in 
multi-energy microgrids with electricity, heating, and 
cooling energy uses. To meet the electrical and 
thermal network constraints, we integrate linear power 
flow (LinDistFlow) and heat transfer equations into 
this formulation.  

• Second, we integrate a set of linear constraints into the 
optimization problem that ensure security of supply 
against N-1 generator contingencies. The constraints 
are developed such that the optimization run time 
remains tractable.  

• And third, we apply the proposed formulation to an 
example isolated microgrid developed based on a real 
isolated microgrid in Alaska.  

This paper is organized as follows. Section III introduces the 
mathematical model for integrated design of multi-energy 
microgrids, i.e. a microgrid with electrical, heating, and cooling 
loads, which includes cabling (electrical) and piping (heating) 
networks. Section IV presents our proposed model for the 
security-constrained design and operation of the microgrid. In 
section V, the example case of an isolated utility microgrid in 

Alaska is studied and discussed. Finally, conclusions and future 
work are presented in section VI.   

III.  MATHEMATICAL MODEL FOR INTEGRATED DESIGN OF 
MULTI-ENERGY MICROGRIDS 

The goal is to develop a model that determines the optimal 
mix, capacity, and siting (placement) of various DER 
technologies that minimize (a) the overall investment and 
operation cost and/or (b) the overall CO2 emissions, while 
ensuring security of the supply. Since the optimization model 
becomes very large and due to the superiority of Mixed Integer 
Linear Program (MILP) solvers over nonlinear ones, we 
formulate the problem as a MILP, by making necessary 
simplifying assumptions, to keep the problem solvable in 
reasonable and practical run times.  

We consider a generic microgrid structure that has a radial 
electrical network and an arbitrary piping network. The load at 
each node is composed of electricity (plug loads), heating 
(space- and water-heating), and cooling (space-cooling and 
refrigeration) end-uses. Recognizing these three end-uses 
enables the formulation to optimally meet the loads by 
leveraging the synergies between different energy carriers, 
since each end-use can be met by multiple technologies. For 
instance: 

• a combination of conventional generators, renewable 
resources, and battery technologies can be used to 
supply electrical end-uses; 

• cooling loads can be met by electrical chillers, 
absorption chillers, or cold storage technoliges; and 

• heating loads can be met by gas-fired boilers, 
recovered heat from CHP technologies, and heat 
storage technologies.   

A visual representation of our energy conversion model is 
depicted in Fig. 1 (similar examples can be found in [26], [27]), 
showing sources and sinks of electricity, heating, and cooling, 
at each of the microgrid nodes. In this figure, different forms of 
energy are shown with different arrow heads to enhance 
readability and also emphasize on the energy conversion. For 
instance, waste heat from CHP technologies (e.g., ICE, MT, or 
FC) is recovered by heat exchangers (HX). Other examples are 
conversion of electrical and heating into cooling by electric 
(EC) and absorption chillers (AC), respectively.  

A.  Continuous vs. discrete investment decision variables 
We model capacity of DER technologies using a continuous 

or discrete variable: If a technology is available in small enough 
modules (e.g. photovoltaic and storage), the optimal capacity is 
modeled as a continuous variable, significantly lowering the 
computation time. These technologies are referred to as 
continuous technologies. Discrete variables are used otherwise 
(e.g. micro-turbines) and called discrete technologies. 
Whenever possible, we use continuous variables to model the 
installed capacity of a given technology, as this significantly 
contributes to reducing the model runtime. 

B.  Time resolution 
We propose to use typical day-types to model a full year. 

More specifically, we define a typical “week” day, “weekend” 
day, and “peak” (e.g. outlier in terms of larger load or larger 
ramp rate) day per month, where each one is modeled with 
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representative hourly load profiles. As a result, our proposed 
formulation models a year with 12×3×24 time-steps, which is 
less than one-tenth of the number of time-steps in the more 
common 8,760-hour modeling. This gain is obtained without 
losing any valuable information in the load profiles, since the 
impact of peak days on component sizing is captured through 
inclusion of “peak” days; and the operation cost is mostly 
determined by typical “week” and “weekend” day-types due to 
their higher frequency of occurrence. It is worth noting that the 
formulation can be generalized to include multiple “peak” day 
types, e.g., one “peak” day profile per end-use or energy carrier.  

 
Fig. 1. Energy conversion and balance at each microgrid node  

C.  MILP optimization model 
The objective is to minimize the overall microgrid investment 

and operation cost (1) or its CO2 emissions (2), or a combination 
of the two objectives. The overall cost (1) includes annualized 
investment costs of technologies, where annuity rate depends 
on the interest rate and technology lifetime; generation cost for 
electrical, heating, or cooling technologies; and cost of post-
contingency load curtailments. The emission objective (2) 
captures CO2 emissions from the operation of all technologies.  

𝐶𝐶Cost = � 𝑛𝑛𝑏𝑏n,g ∙ P�g ∙ TCCg ∙ ARg 
n,g

+� �FCCk ∙ 𝛥𝛥𝑏𝑏n,k + VCCk ∙ 𝐶𝐶n,k� ∙ ARk
n,k

+� 𝛥𝛥𝑃𝑃n,j,t ∙ GCj
n,j,t

+� 𝛥𝛥𝑃𝑃n,t
Cur ∙ CCn

n,t

 (1) 

𝐶𝐶CO2 = � 𝛥𝛥𝑃𝑃n,j,t ∙ CERj
n,j,t

 (2) 

It is worth noting that the operation costs in (1) are scaled up 
from the 864 time-steps to 8,760 time-steps by considering the 
number of day-types per month, e.g., 20 “week” days, 8 
“weekend” days, and 2 “peak” days. the scaling is now shown 
in (1) to simplify the presentation of the equation. 

We adopted LinDistFlow, a distribution-level tractable linear 
balanced AC power flow model [28], [29]. This model (3)-(6) 
is advantageous over the well-known DC power flow 
approximation, since it allows for voltage magnitude deviations 
in the network, considers line resistances, and models both 
active and reactive power flow in the network. The net injected 
active power at a node, 𝛥𝛥𝑏𝑏n,t, accounts for DER generation, 
electric load, electric chiller consumption, and electric storage 
system charging/discharging (7). Equations (8)-(9) enforce bus 
voltage constraints and line power constraints in the network, 
respectively. To linearize line power capacity constraints, we 
use an inner approximation of the exact constraint, i.e. the 
octagon in Fig. 2. instead of the circle, using the constraints in 
(9). 

𝑉𝑉𝑉𝑉n,t − 𝑉𝑉𝑉𝑉n′,t = 2 ∙ �Rn,n′ ∙ 𝛥𝛥n,n′,t + Xn,n′ ∙ 𝑄𝑄n,n′,t� (3) 

𝑉𝑉𝑉𝑉n=1,t = V0
2 (4) 

𝛥𝛥𝑏𝑏n,t = � 𝛥𝛥n,n′,t
n′

 (5) 

𝑄𝑄𝑏𝑏n,t = � 𝑄𝑄n,n′,t
n′

 (6) 

Sb ∙ 𝛥𝛥𝑏𝑏n,t = � 𝛥𝛥𝑃𝑃n,j,t
j∈{PV,ICE,MT,FC}

− Pln,u=EL,t

−
1

CPe
∙ 𝛥𝛥𝑃𝑃n,c=EC,t

+𝐷𝐷𝑅𝑅n,s=ES,t ∙ ηs=ESD −
1

ηs=ESC ∙ 𝐶𝐶𝑅𝑅n,S=ES,t

 (7) 

V2 ≤ 𝑉𝑉𝑉𝑉n,t ≤ V
2

 (8) 

±𝑄𝑄n,n′,t  ≤ cotan��
1

2
− e�

π
4

 � ∙ �𝛥𝛥n,n′,t − cos �e
π
4
� ∙ Sn,n′�

+ sin �e
π
4
� ∙ Sn,n′                                      e ∈ {1, … ,4}

 (9) 
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Fig. 2. Approximation of line capacity constraints 

The heat balance equation at each node (10) accounts for heat 
generation; recovered CHP heat; heating loads inclusive of the 
required heat for absorption chilling, heat from/to storage 
technologies; and heat transfer between nodes through the 
piping network considering losses. Equation (11) enforces the 
pipe capacities. The cooling load at each node can be met by a 
combination of electric and absorption chilling and energy from 
cold storage technology (12).  

0 = � 𝛥𝛥𝑃𝑃n,j,t
j∈{ST,BL}

+ � αg ∙ 𝛥𝛥𝑃𝑃n,g,t
g∈{ICE,MT}

−Pln,u=HT,t −
1

CPa
∙ 𝛥𝛥𝑃𝑃n,j=AC,t

−
1

ηs=HSC ∙ 𝐶𝐶𝑅𝑅n,s=HS,t + ηs=HSD ∙ 𝐷𝐷𝑅𝑅n,s=HS,t

−� 𝐻𝐻n,n′,t
n′

+ � �1 − γn,n′� ∙ 𝐻𝐻n′,n,t
n′

 (10) 

0 ≤ 𝐻𝐻n,n′,t ≤ H�n,n′  (11) 

0 = � 𝛥𝛥𝑃𝑃n,c,t
c∈{AC,EC}

− Pln,u=CL,t

+ηs=CSD ∙ 𝐷𝐷𝑅𝑅n,s=CS,t −
1

ηs=CSC ∙ 𝐶𝐶𝑅𝑅n,s=CS,t

 (12) 

The literature on district heating networks includes a wide 
spectrum of modeling approaches, ranging from simple linear 
models with linear heat loss equations [17] to complex 
nonlinear models that include details such as network heat and 
pressure loss, temperature dynamics, etc. [30]. In this work, we 
use the former approach, in order to preserve optimization 
model linearity.  

The energy (𝐸𝐸) in electrical, heat, and cold storage 
technologies, considering self-discharge, are tracked (13) and 
kept within limits (14). The rate of charging (𝐶𝐶𝑅𝑅) and 
discharging (𝐷𝐷𝑅𝑅) is also limited (15). 

𝐸𝐸n,s,t = (1 − φs) ∙ 𝐸𝐸n,s,t−1 + 𝐶𝐶𝑅𝑅n,s,t ∙ Δt− 𝐷𝐷𝑅𝑅n,s,t ∙ Δt (13) 

Es ≤ 𝐸𝐸n,s,t ≤ Es (14) 

𝐶𝐶𝑅𝑅n,s,t ≤ 𝐶𝐶n,s ∙ CRs ,   𝐷𝐷𝑅𝑅n,s,t ≤ 𝐶𝐶n,s ∙ DRs (15) 

It is worth noting while a heat storage can be charged and 
discharged simultaneously (through different cycles), an 
electrical storage cannot. Therefore, it is common to use binary 
operational variables for an electrical storage unit to prevent 
simultaneous charging and discharging, e.g. [25]. However, 
since we consider non-ideal charging and discharging 
efficiencies (efficiency less than 100%), the model does not 
need to include such binary variables, as the optimization 
inherently picks a charging/discharging mode at each step and 

avoids simultaneous charging/discharging, in order to minimize 
the cost associated with charging/discharging loss. Our 
approach results in the same solution (given the optimization is 
solved with a good accuracy), while using fewer decision 
variables and constraints. More specifically, the proposed 
approach saves one binary decision variable and one constraint 
per node per time-step.  

The dispatch of each technology does not exceed its 
maximum capacity and/or potential, or fall below the minimum 
acceptable limit (16)-(19).  

𝛥𝛥𝑃𝑃n,c,t ≤ 𝐶𝐶n,c ∙ SPt ;    c ∈ {PV, ST} (16) 

𝑛𝑛𝑛𝑛n,g,t ∙ Pg ≤ 𝛥𝛥𝑃𝑃n,g,t ≤ 𝑛𝑛𝑛𝑛n,g,t ∙ P�g (17) 

𝑛𝑛𝑛𝑛n,g,t ≤ 𝑛𝑛𝑏𝑏n,g (18) 

𝛥𝛥𝑃𝑃n,c,t ≤ 𝐶𝐶n,k ≤ 𝛥𝛥𝑏𝑏n,k ∙ M (19) 

To ensure economic feasibility of the microgrid design, more 
constraints may be integrated into the model, in which: a) 
saving in the operational cost of the microgrid is calculated 
against a base-case (i.e., business-as-usual case); and b) an 
investment payback constraint is defined that takes into account 
investment cost, operational cost saving, interest rate, and 
lifetime of various technologies. Detailed discussion of 
payback constraints can be found in [25]. 

IV.  MATHEMATICAL MODEL FOR SECURITY CONSTRAINTS 
In our proposed security-constrained design approach, a 

series of constraints are integrated into the optimization to 
ensure the system has enough reserve generation online to make 
up for the loss of any single generation or storage unit, 
considering ramping constraints. It is assumed that thermal 
loads in the system are not critical and the system can tolerate 
their curtailment. Consequently, only electrical contingencies 
are taken into account, and thermal generation and storage 
outages are not considered. Furthermore, following an electrical 
contingency, the microgrid must supply electrical end-use 
loads, and thermal end-use loads may be curtailed without a 
penalty. 

As shown in Fig. 3, when an outage happens, the remaining 
generators (and storage devices) are given some time (Δtctgrmp) 
to ramp up. After this period, the total system generation must 
be enough to meet the loads (considering any load curtailment).  

We model outage of continuous and discrete technologies 
differently, as depicted in Fig. 4:  

• When considering a continuous technology (e.g. 
photovoltaic) outage at a node, its entire generation 
(𝛥𝛥𝑃𝑃n,c,t) at the node will be lost. That is because it is 
assumed that the entire capacity (𝐶𝐶n,c) is installed in 
one unit.  

• In contrast, since we allow for several units from a 
discrete technology (𝑛𝑛𝑏𝑏n,g) to be installed at a node, 
only a portion (generation of a single unit) of the 
aggregate generation (𝛥𝛥𝑃𝑃n,g,t) is lost in an outage. 
Therefore, although only the aggregate generation of a 
technology at a node (𝛥𝛥𝑃𝑃n,g,t) is relevant for power 
flow modeling, knowledge about generation of 
individual units is needed for contingency analysis.  
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Fig. 3. Timing assumptions for the contingency analysis  

 
Fig. 4. Lost generation power for continuous and discrete technology outages   

It is common practice in security-constrained dispatch 
formulations [31], [32] to track the generation of individual 
generator units. In our design formulation, this practice will 
translate into disaggregating the generation of a group of units 
from a technology (𝛥𝛥𝑃𝑃n,g,t) into the maximum number of units 
that can be installed from a technology at a bus, e.g. 10 units, 
and tracking the generation of each unit in order to formulate 
N-1 contingency constraints. This approach, however, will 
impose a significant computation burden on the solver, since it 
entails a large number of continuous and binary decision 
variables and constraints. Note that in order to impose the 
minimum generation limit on each unit, a binary decision 
variable is required to track the online/offline status of each unit 
at each time-step.  

To address this challenge and integrate N-1 security 
constraints efficiently with fewer decision variables, we 
propose a novel approach, where the units from each discrete 
technology type (at a node) are classified into three categories 
and the aggregated generation of each category is tracked, 
instead of the generation of each unit. The three categories are: 

• the units operating at the minimum load; 
• the units operating at the maximum load; and 
• the unit operating at partial load, i.e. between 

minimum and maximum loads (note: no more than one 
unit).  

This classification of the units is due to the tradeoff between 
operating efficiency and reserve capacity: On one hand, the 
optimal dispatch tends to run a generator unit at its maximum 
load (P�g) due to higher efficiency. On the other hand, 
consideration of generator outages motivates the optimization 
to run more units at their minimum load (Pg), in order to 
increase the reserve in the system. Therefore, the proposed 
categories capture the tradeoffs between running the units at 
maximum load vs. minimum load. The consideration of one 

partial load unit is to enable disaggregation of any arbitrary 
value of 𝛥𝛥𝑃𝑃n,g,t into the three categories.    

Equations (20)-(22) show how we disaggregate 𝛥𝛥𝑃𝑃n,g,t and 
𝑛𝑛𝑛𝑛n,g,t into the number of units operating at the minimum load 
(𝑛𝑛𝑛𝑛n,g,t), number of units operating at the maximum load 
(𝑛𝑛𝑏𝑏n,g,t), and generation power of the unit operating at a partial 
load (𝛥𝛥𝑃𝑃n,g,t

Prt ). Binary variable 𝛥𝛥𝑏𝑏n,g,t denotes whether a partial 
load unit exists. To simplify the contingency constraints, it is 
assumed that a partial load unit always exists (𝛥𝛥𝑏𝑏n,g,t = 1) if 
𝑛𝑛𝑛𝑛n,g,t > 0 (23).  

𝑛𝑛𝑛𝑛n,g,t = 𝑛𝑛𝑛𝑛n,g,t + 𝑛𝑛𝑏𝑏n,g,t + 𝛥𝛥𝑏𝑏n,g,t (20) 

𝛥𝛥𝑃𝑃n,g,t = 𝛥𝛥𝑃𝑃n,g,t
Prt + 𝑛𝑛𝑛𝑛n,g,t ∙ Pg + 𝑛𝑛𝑏𝑏n,g,t ∙ P�g (21) 

𝛥𝛥𝑏𝑏n,g,t ∙ Pg ≤ 𝛥𝛥𝑃𝑃n,g,t
Prt ≤ 𝛥𝛥𝑏𝑏n,g,t ∙ P�g (22) 

𝛥𝛥𝑏𝑏n,g,t ∙ M ≥ 𝑛𝑛𝑛𝑛n,g,t (23) 

Next, we develop equations that determine the maximum 
possible contribution of each DER to the post-contingency state 
of the system. The maximum output change for minimum load 
units after a contingency happens, 𝛥𝛥𝛥𝛥𝑃𝑃n,g,t

Min , is limited by the 
unused capacity of the units (24) and their maximum rate of 
change (25). Similarly, the maximum contribution of a partial 
load unit, 𝛥𝛥𝛥𝛥𝑃𝑃n,g,t

Prt , is limited by its unused capacity (26) and the 
maximum rate of change (27). Maximum load units cannot 
increase their generations if a contingency happens.  

The output change for an electric storage system is limited by 
its maximum ramp rate (28). Also, since the post-contingency 
dispatch must be sustainable for a period of Δtctg (see Fig. 3), 
storage system must be able to keep its post-contingency output 
for this period (29). Since renewable generation technologies 
are assumed to be operating at their maximum potential at all 
times, these units cannot increase their generation in the post-
contingency state.  

𝛥𝛥𝛥𝛥𝑃𝑃n,g,t
Min ≤ �P�g − Pg� ∙ 𝑛𝑛𝑛𝑛n,g,t (24) 

𝛥𝛥𝛥𝛥𝑃𝑃n,g,t
Min ≤ PgRg ∙ P�g ∙ Δtctgrmp ∙ 𝑛𝑛𝑛𝑛n,g,t (25) 

𝛥𝛥𝛥𝛥𝑃𝑃n,g,t
Prt ≤ P�g − 𝛥𝛥𝑃𝑃n,g,t

Prt  (26) 

𝛥𝛥𝛥𝛥𝑃𝑃n,g,t
Prt ≤ PgRg ∙ P�g ∙ Δtctgrmp ∙ 𝛥𝛥𝑏𝑏n,g,t (27) 

Δ𝛥𝛥𝛥𝛥n,s=ES,t ≤ DRs=ES ∙ 𝐶𝐶n,s=ES − 𝐷𝐷𝑅𝑅n,s=ES,t (28) 

Δtctg ∙ �𝛥𝛥𝛥𝛥𝛥𝛥n,s=ES,t + 𝐷𝐷𝑅𝑅n,s=ES,t� ≤ 𝐸𝐸n,s=ES,t (29) 

To integrate reserve equations into the security-constrained 
optimal dispatch, the traditional approach [31], [33] is to 
impose a fixed (static) reserve requirement, such as size of the 
largest system generator or a percentage of total system load. 
However, dynamic allocation of system reserve [34], [35] can 
offer a less conservative and more economical solution. To this 
end, we develop a novel set of reserve equations that 
dynamically allocate reserve in the system depending on the 
generation of different technologies, storage system state of 
charge, technology ramping constraints, etc. The dynamic 
reserve equations (security constraints) against outage of 
renewable (continuous) generation technologies, storage 
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technologies, and conventional (discrete) generation 
technologies are presented in (30)-(32), respectively. For each 
outage, the pre-contingency generation power of the outaged 
unit must be less than the available reserve in the system, where 
the available reserve is composed of:  

• generation increase in discrete technologies (minimum 
load units and partial load unit);  

• increase in storage output; and 
• post-contingency load curtailment including electric 

chiller load and storage charging load (since they will 
not be met during the contingency period). 

The reserve capacity in the system must be larger than the 
generation of each continuous unit at each bus n at any given 
time t (30), where all of the system discrete generators and 
batteries can contribute to the system reserve. Furthermore, 
post-contingency electrical load curtailments (𝛥𝛥𝑃𝑃n′,t

Cur), as well as 
pre-contingency storage charging and electric chiller loads that 
will be shed, can be leveraged to increase the system reserve. 
Equation (31) imposes a similar constraint considering the 
outage of the storage system at any bus n. Note that all of the 
system batteries, except for the battery whose outage is being 
constrained (hence the negative term in the reserve calculation), 
can contribute to the reserve.  

𝛥𝛥𝑃𝑃n,c=PV,t ≤ � �𝛥𝛥𝛥𝛥𝑃𝑃n′,g,t
Min + 𝛥𝛥𝛥𝛥𝑃𝑃n′,g,t

Prt �
n′,g,t

+� 𝛥𝛥𝛥𝛥𝛥𝛥n′,s=ES,t
n′

          +� 𝛥𝛥𝑃𝑃n′,t
Cur

n′

+� 𝐶𝐶𝑅𝑅n′,s=ES,t
n′

+ �
1

CPe
∙ 𝛥𝛥𝑃𝑃n′,c=EC,t

𝑛𝑛′
  

 (30) 

𝐷𝐷𝑅𝑅n,s=ES,t ≤ � �𝛥𝛥𝛥𝛥𝑃𝑃n′,g,t
Min + 𝛥𝛥𝛥𝛥𝑃𝑃n′,g,t

Prt �
n′,g,t

+� 𝛥𝛥𝛥𝛥𝛥𝛥n′,s=ES,t
n′

− 𝛥𝛥𝛥𝛥𝛥𝛥n,s=ES,t

+� 𝛥𝛥𝑃𝑃n′,t
Cur

n′

+� 𝐶𝐶𝑅𝑅n′,s=ES,t
n′

+ �
1

CPe
∙ 𝛥𝛥𝑃𝑃n′,c=EC,t

𝑛𝑛′

 (31) 

𝛥𝛥𝑃𝑃n,g,t
Lst ≤� �𝛥𝛥𝑃𝑃n′,g′,t

Min + 𝛥𝛥𝛥𝛥𝑃𝑃n′,g′,t
Prt �

n′,g′,t

−𝛥𝛥𝛥𝛥𝑃𝑃n,g,t
PrtLst

+� 𝛥𝛥𝛥𝛥𝛥𝛥n′,s=ES,t
n′

          +� 𝛥𝛥𝑃𝑃n′,t
Cur

n′

+� 𝐶𝐶𝑅𝑅n′,s=ES,t
n′

+ �
1

CPe
∙ 𝛥𝛥𝑃𝑃n′,c=EC,t

𝑛𝑛′

 (32) 

In (32) for imposing the security constraint for discrete 
generator outages, 𝛥𝛥𝑃𝑃n,g,t

Lst  is the largest generation power 
among all of the units from technology g connected to bus n. 
Hence, 𝛥𝛥𝑃𝑃n,g,t

Lst  is P�g if there is a unit operating at maximum load 
(33)-(34), or otherwise, is the power of the partial load unit (35). 
The variable 𝛥𝛥𝛥𝛥𝑃𝑃n,g,t

PrtLst is used to negate the contribution of the 
outaged unit from the total contribution of the units. It is 0 if the 
outaged unit is a maximum load unit (when 𝛥𝛥𝑏𝑏n,g,t, a binary 
variable that denotes whether a maximum load unit exists, is 

one) and is 𝛥𝛥𝛥𝛥𝑃𝑃Prtn,g,t if the outaged unit is a partial load unit 
(when 𝛥𝛥𝑏𝑏n,g,t = 0), as shown in (36).  

𝛥𝛥𝑃𝑃n,g,t
Lst ≥ 𝛥𝛥𝑏𝑏n,g,t ∙ P�g (33) 

𝛥𝛥𝑏𝑏n,g,t ≤ 𝑛𝑛𝑏𝑏n,g,t ≤ 𝛥𝛥𝑏𝑏n,g,t ∙ M (34) 

𝛥𝛥𝑃𝑃n,g,t
Lst ≥ 𝛥𝛥𝑃𝑃n,g,t

Prt  (35) 

𝛥𝛥𝛥𝛥𝑃𝑃n,g,t
PrtLst ≥ 𝛥𝛥𝛥𝛥𝑃𝑃n,g,t

Prt − 𝛥𝛥𝑏𝑏n,g,t ∙ P�g (36) 

V.  CASE STUDY 

A.  Case setup 
We developed an isolated microgrid test system based on a 

real-life remote utility microgrid in Nome, Alaska [36]. This 
model is composed of 19 nodes and its GIS and electrical and 
thermal single line diagrams are shown in Fig. 5. The important 
technology parameters are shown in Table I and Table II. More 
details can be provided upon request.  

We consider three cases. In Case I the objective is to 
minimize overall costs, but N-1 contingency constraints are not 
included. In Case II, we minimize the overall costs while 
including the contingency constraints. In Case III, a composite 
objective (50% weight for cost objective and 50% weight for 
CO2 emission objective) is considered and security constraints 
are also taken into account. In each case, the optimization model 
determines the optimal mix and size of discrete (1,000 and 
5,000 kVA CHP-enabled diesel engines) and continuous 
(photovoltaic, battery, boiler, and electric chiller) technologies 
that can be installed at nodes 1, 8, and 18, which are the 
microgrid’s central power plant, a hospital, and a residential 
neighborhood toward the end of a long feeder, respectively.  

 
Fig. 5. Single line diagram and GIS view of the example isolated microgrid 
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TABLE I 
INVESTMENT PARAMETERS FOR CONTINUOUS TECHNOLOGIES 

Technology Fixed Cost ($) Variable Cost ($/kW) 
Battery 75,000 500 
Photovoltaic 40,000 4,000 
Boiler 4,500 30 
Electric Chiller 2,300 230 

TABLE II 
INVESTMENT AND OPERATION PARAMETERS FOR DISCRETE TECHNOLOGIES  

 
Technology 

Size 
(kW) 

Cost 
($/kW) 

Eff. 
(%) 

Min/Max  
Load (%) 

Ramp Rt.  
(%/min) 

Ht. Rec. 
Alpha 

CHP Diesel 1,000 1,911 36.8% 30%, 100% 50% 1.019 
CHP Diesel 5,000 1,182 41.6% 30%, 100% 50% 0.797 

B.  Optimal DER mix, capacity, and siting 
The results of the case studies, including DER capacities at 

each node (i.e., n1, n8, and n18), annualized investment and 
annual operation costs, post-contingency load curtailment 
costs, and annual CO2 emissions are summarized in Table III.  

In Case I, only one unit of the 5,000 kVA CHP-enabled diesel 
generator is installed at the central power plant (node 1) without 
any photovoltaic or battery investments in the system. When the 
contingency constraints are added to the optimization model in 
Case II, a 2,833 kWh battery storage system is added to the 
optimal technology mix. Furthermore, the solution includes 
several small diesel units instead of one large unit (3×1,000 vs. 
1×5,000 kVA), because several units operating in parallel 
enhance the system security against generator outage 
contingencies. Consequently, both investment and operation 
costs increase in Case II. It is worth noting that the optimal 
solution does not include any photovoltaic systems, mainly 
because they are not dispatchable and cannot contribute to the 
reserve constraints.  

In Case III, cost minimization and emission reduction are 
considered with the same weight. Several observations can be 
made from the optimal investment solution. First, in order to 
reduce CO2 emissions, 4,274 kW of photovoltaics are installed 
at note 8, although photovoltaic was not cost-effective in Case 
I and II. Second, the size of the battery storage system at node 
8 becomes threefold larger compared to Case II. Third, 
compared to Case II, one of the 1,000 kVA diesel units at node 
1 is replaced with a 5,000 kVA unit. The reason is that the larger 
unit has a higher efficiency (41.6% vs. 36.8%) and hence, can 
reduce CO2 emissions. The optimal DER mix in Case III results 
in a 14% reduction in CO2 emissions that is made possible by a 
19% increase in the total annual investment and operation costs.  

TABLE III 
CASE STUDY RESULTS – OPTIMAL TECHNOLOGY MIX AND SITING 

   Case I Case II Case III 

D
ER

 C
ap

ac
iti

es
 

Photovoltaic n1      
(kw) n8    4,274  
  n18      
Battery  n1      
(kWh) n8  2,883  8,220  
  n18      
CHP-enabled n1 1×5,000 3×1,000 2×1,000 + 1×5,000 
diesel engine n8      
(units × kVA cap) n18      

C
os

ts 

Operation (k$) 8,133 8,662  7,486  
Investment (k$) 962 1,240  4,291  
Curtailment (k$) - 31  39  
Total (k$) 9,096 9,932  11,816  

 CO2 (tons) 16,104 16,650  14,329  

C.  Optimal electricity, heating, and cooling dispatch 
To illustrate dispatch signals, Fig. 6 - Fig. 9 show optimal 

electrical and heating dispatch for multiple nodes in Case III. 
The optimal electrical dispatch for nodes 1 and 8 is shown in 
Fig. 6 and Fig. 7, respectively. Export of energy (to other nodes) 
is shown with negative values. The generation from the 3×1,000 
kVA and 1×5,000 kVA diesel generators at node 1 is entirely 
exported to other nodes, since the node does not have any loads 
of its own. Node 8 is equipped with a photovoltaic and a battery 
system to supply its own load and export the extra power to 
other nodes. The battery is charged during peak photovoltaic 
hours and discharged at morning and afternoon. The interplay 
between electricity and cooling impacts the load in this figure, 
since it includes the electrical end-use loads as well as electrical 
consumption of chillers.  

 

 
Fig. 6. Optimal electricity dispatch for node 1 (Case III, September weekday) 
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Fig. 7. Optimal electricity dispatch for node 8 (Case III, September weekday) 

 
Fig. 8. Optimal heating dispatch for node 1 (Case III, July weekday) 

 
Fig. 9. Optimal heating dispatch for node 11 (Case III, July weekday) 

The optimal heating dispatch for nodes 1 and 11 is shown in 
Fig. 8 and Fig. 9, respectively. The heat from diesel units at 
node 1 is recovered and exported to other nodes through pipes. 
The consideration of recovered heat ties the dispatch of 
electricity and heating in the system. The heating loads at node 
11 are met by the heat imported to the node. This node also 
exports the extra heat (from import) to other microgrid nodes.  

 
Fig. 10. Outage power vs. system reserve for various generator contingencies 
during a September peak day in Case III: (a) outage of the photovoltaic system at 
node 8; (b) outage of battery at node 8; (c) outage of one of the two 1,000 kVA 
diesel units at node 1; (d) outage of the 5,000 kVA diesel unit at node 1 

 
Fig. 11. Box plot for voltage magnitude error – Case III 

D.  Security against N-1 contingencies 
Fig. 10 shows the generation outage power vs. system reserve 

for various generation contingencies during a September peak 
day in Case III (arbitrarily chosen), where the outage power and 
system reserve refer to the left-hand side and right-hand side 
terms in (30)-(32), respectively. As shown in this figure, the 
integration of security constraints forces the system reserve to 
be more than the outage power at any given time. In this 
example, outage of the 5,000 kVA diesel unit at node 1 is the 
most severe contingency, since it is much larger than all other 
dispatchable units in the system. Fig. 10(d) confirms this 
intuition and shows that although the system maintains enough 
reserve against this contingency, the difference between the 
outage power and the reserve in the system is much smaller 
compared to other contingencies.  

E.  Voltage profile and linear power flow accuracy 
The box plot for voltage magnitude error at each microgrid 

node is shown in Fig. 11 for Case III, where the error is the % 
difference between the approximate voltage solution (from the 
optimization) and the exact voltage solution (obtained post-
optimization using Newton-Raphson algorithm). The error 
increases as the node distance from the slack bus, i.e. node 1, 
increases. However, the maximum error is less than 0.6%, 
which shows a very high accuracy. Our analysis shows that in 
this case, >87% of voltage data points have an error less than 
0.3% and >97% of data points have an error less than 0.5%.  
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VI.  CONCLUSIONS AND FUTURE WORK 
This paper presents a novel approach for security-

constrained optimal design of isolated multi-energy microgrids, 
formulated as a mixed integer linear program. Our optimal 
design entails optimal DER technology mix, size, and dispatch, 
and takes into account the interplay between electricity, 
heating, and cooling loads and sources in the system; and hence, 
is able to capture benefits of CHP technologies. To provide a 
secure design/operation against N-1 generator contingencies, a 
novel model was developed to dynamically assess the 
microgrid generation reserve.  

To illustrate how the method works, several case studies 
were carried out on an isolated microgrid model that we 
developed based on a real isolated utility microgrid in Alaska 
and the impact of contingency constraints on the optimal 
solution was discussed. The studies showed that a cost-
minimization design, especially in the presence of security 
constraints, may not lead to adoption of renewable resources, 
mainly due to their un-dispatchability and inability to ramp up 
generation following a system contingency. However, a cost-
emission composite objective may lead to deployment of 
renewable technologies. Evaluating the accuracy of the 
integrated linear power flow equations (LinDistFlow) showed 
very high accuracy for the model.  

Future research will focus on integrating network design 
(cable/pipe placement and sizing) into the model. We will also 
explore how renewable generation stochasticity can be 
incorporated into the optimization model. Furthermore, 
integration of non-electrical contingencies, e.g. outage of 
thermal resources, can also add to the value of this work.  
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